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Asymmetric epoxidation of olefins presents a powerful strategy
for the synthesis of enantiomerically enriched epoxidéd-or
the epoxidation of unfunctionalizeds-olefins, chiral salen and
porphyrin complexes give very high enantioselectivities. Jacob-
sen’s Mn salen catalyst is particularly successful and practical.

Dioxiranes generated in situ from chiral ketones have been shown

to be highly enantioselective for the asymmetric epoxidation of
trans-olefins and trisubstituted olefirfs® However, highly enan-
tioselective epoxidation dfis-olefins using chiral dioxiranes still
remains a challenging problem. Herein we wish to report our
preliminary efforts on this subject.

Recently, we reported that the fructose-derived ketbigean

effective epoxidation catalyst and gives high ee values for a 6

variety oftrans-olefins and trisubstituted olefins (eqjowever,
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epoxidation ofcis-olefins using this ketone led to rather poor
enantioselectivity® For example, a 39% ee was obtaineddisr
p-methylstyrene, giving the (1R,2S) epoxide as the major enan-
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Chart 1
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Table 1. Asymmetric Epoxidation of Olefins Catalyzed by Ketdfe

Entry Substrate Yield(%) ee (%) Configuration
=
¢ 87 91h (-)-(1R,25)m.9a.b
R
2 OO 91 92i (-)-(1R,2S)"
3 88 83) (-)-(1R,28ym9%¢
4 II 88 84 (+)-(1R,25)m.9b.7d
5d 77 91k (-)-(5R,6S)m.9d.e
O
° 61 91! (+)-3R 4R)mItg
// S
7f P 82 91! (-)-(28,3R)0.Tad
// R
8e Ceothg 77 87! (-)-(28,3R)°
92 C Oj 47 96h +)
108 2 oj 61 97h (+)%h
118 Qz; 88 94h (+)
12¢ pr S 65 941 (+-RRymi6e
13¢ PN 91 77h (+)-(R R)ym9a
P
i4¢ h/Y 78 95h (+)%¢
Ph
15¢ 55 80! (+)6¢

aAll reactions were carried out with olefin (0.5 mmol), ketone
(0.075-0.15 mmol), Oxone (0.89 mmol), and,®O; (2.01 mmol) in
DME/DMM (3:1, v/v) (7.5 mL) and buffer (0.2 M KCO;—AcOH,
pH 8.0) (5 mL) at—10 or 0°C unless otherwise stated. The reactions
were stopped after 3.5 AThe epoxides were purified by flash
chromatography and gave satisfactory spectroscopic characterization.
¢With 0.075 mmol of ketone at-10 °C. ¢ With 0.10 mmol of ketone
at—10°C. ¢ With 0.075 mmol of ketone at 8C. f With 0.15 mmol of
ketone at—10 °C. 9 With 0.15 mmol of ketone at OC. " Enantiose-
lectivity was determined by chiral GC (Chiraldex G-TAEnantiose-
lectivity was determined by chiral HPLC (Chiralcel OUEnantiose-
lectivity was determined by chiral HPLC (Chiralcel OBJEnantioselectivity
was determined by chiral HPLC (Chiralpak AD)XEnantioselectivity
was determined by chiral HPLC (Chiralcel OD)The absolute
configurations were determined by comparing the measured optical
rotations with the reported onesThe epoxide was reduced to 1-(2-
naphthyl)propanol with LiAIH, and the absolute configuration was
determined by comparing the measured optical rotation of the alcohol
with the reported one (ref 109.The epoxide was reduced with LiAIH
to the corresponding homopropargyl alcohol, and the absolute config-
uration was determined by a correlation of the resulting alcohol with
a prepared authentic sample by a different route.

tiomer. Spiro transition states andB are likely to be the two
major competing transition states (Charf4)he low ee obtained
suggests that the ketone catalyst does not provide the necessary
structural environment to sufficiently differentiate between the
phenyl and methyl groups of the olefin in these two transition
states (Chart 1).

During the course of our continuing studies of structural effects
of ketones on catalysis, keto2ea nitrogen analogue df, was
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designed and investigated for epoxidation. Although our initial Chart 2

studies showed that ketorzedid not give as high enantioselec- Spiro (C) Spiro (D)

tivity as 1 for trans-olefins, its behavior towardis-olefins was Favored Disfavored

strikingly different. When theoepomdatlon oisf-methylstyrene  ransition states (Chart 2). The determination of the absolute
was carried out with 15 mol % ketoreat —10°C, (IR, 29)-cis- configurations of some selected epoxides (Table 1, entriegy 1

B-methylstyrene oxide was obtained in 87% yield with 91% ee. ghowed that groups with a system preferred to be proximal to
Furthermore, like other dioxirane-mediated epoxidations, the the spiro oxazolidinone. It appears that spids favored over
epoxidation ofis-3-methylstyrene was found to be stereospecific, b for substrates containing @ system. A clear mechanistic
with no trans-#-methylstyrene oxide formed during the reacti(_)n, understanding awaits further investigation.
as judged by'H NMR and GC assays of the crude reaction | symmary, we report a highly enantioselective epoxidation
mixture. , , , _ for cis-olefins using chiral keton& as catalyst and Oxone as
Encouraged by this result, we investigated the asymmetric ,yigant. High ee values have been obtained for a number of cyclic
epoxidation of a variety o€is-olefins to explore the generality  5n4 aeycliccis-olefins. The epoxidation was stereospecific with
of ketone2. The enantiomeric excesses were generally high for ., isomerization observed in the epoxidation of acyclic systems.
a variety of acyclic and cycliccis-olefins conjugated with  The source of the enantioselectivity is not known at this time.
aromatics (Table 1, entries—5). The epoxidation ofcis-1- The results described show that chiral dioxiranes can also
cyclohexyl-1-propene with ketorresulted in the formation of  gpyidizecis-olefins in addition taransolefins and trisubstituted
the (R 39)-2-cyclohexyl-3-methyloxirane in 67% ee, indicating  gjefins in a high degree of enantioselectivity. Ketdheeveals a
that a conjugated aromatic group is beneficial for the enantiose- yromising structural element required for the ketone to induce
lectivity. The epoxidation of acyclic enynes was also found 10 he high enantioselectivity for the epoxidationois-olefins, which
be both highly enantioselective and stereospecific, providisg  56vides a basis for further optimization of the ketone structure
epoxides with high ee values (Table 1, entries 7 and-igh ee to enhance both enantioselectivity and catalytic activity.
values were obtained for 3,3-ethylenedioxycycloalkenes as well
(Table 1, entries 911). The enantioselectivity fdrans-olefins Acknowledgment. We are grateful for the generous financial support
and trisubstituted olefins was found to be substrate dependentfrom the General Medical Sciences of the National Institutes of Health
(Table 1, entries 1215)8 (GM59705-02), the Arnold and Mabel Beckman Foundation, the Camille
The high ee values obtained with ketoéor cis-olefins are and Henry Dreyfus Foundation, Alfred P. Sloan Foundation, DuPont,
rather intriguing. SpiroC and D are the two most plausible  Eli Lilly, Glaxowellcome, and Merck.
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